Unit convenor and teaching staff |
Unit convenor and teaching staff
Unit Convenor
Jun Ma
Contact via email
12 Wally's Walk (E7A), room 526
TBA
|
---|---|
Credit points |
Credit points
4
|
Prerequisites |
Prerequisites
((Admission to MAppStat or MSc or GradCertAppStat or GradDipAppStat or MActPrac or MDataSc) and (STAT806 or STAT810)) or ((admission to MLabQAMgt or PGCertLabQAMgt or GradDipLabQAMgt or GradCertLabQAMgt or MMarScMgt or MConsBiol or GradDipConsBiol) and STAT830)
|
Corequisites |
Corequisites
|
Co-badged status |
Co-badged status
STAT721
|
Unit description |
Unit description
This unit introduces methodologies and techniques for the exploration and analysis of multivariate data. Topics include graphical displays, discriminant analysis, principal components analysis, multivariate normal distribution, multivariate linear models, and cluster analysis.
|
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates
On successful completion of this unit, you will be able to:
Assignment late submission
Name | Weighting | Hurdle | Due |
---|---|---|---|
Assignment 1 | 15% | No | 6pm on Sep 5, 2018 |
Assignment 2 | 15% | No | 6pm on Oct 31, 2018 |
Takehome examination | 45% | No | 10am Nov 12, 2018 |
Written Examination | 25% | No | University Exam period |
Due: 6pm on Sep 5, 2018
Weighting: 15%
Assignment 1 will be available on the unit webpage in week 3 and due in the week 6 lecture. Assignments may be handwritten or word-processed. Students can submit their assignment in person to the lecturer, or electronically via email to "jun.ma@mq.edu.au".
Due: 6pm on Oct 31, 2018
Weighting: 15%
Assignment 2 will be available in week 9 and due in the week 12 lecture. Assignments may be handwritten or word-processed, and can be submitted in person, or electronically via email to "jun.ma@mq.edu.au".
Due: 10am Nov 12, 2018
Weighting: 45%
For the take-home exam students will have THREE days to complete their exam papers. The exam paper will be available on unit web page at 10am on Friday 9th November, 2018 and the students must submit their answers before 10am, Monday November 12, 2018. This examination involves mainly analysis of real data sets and some simple theoretical questions. Computer coding in R is required.
Due: University Exam period
Weighting: 25%
This is a written exam and it is to be scheduled in the university exam period. This examination mainly involves conceptual questions or simple calculation questions. For example, it may ask students to identify an appropriate hypothesis testing method for a particular data set. For this exam, students are allowed to bring into the exam room TWO A4 paper written/typed on both sides; photocopies are not allowed. Only non-programmable calculators that do not have text retrieval capacity are allowed. Students who apply Supplementary Exams must make themselves available during supplementary exam period.
If you receive special consideration for the final exam, a supplementary exam will be scheduled in the interval between the regular exam period and the start of the next session. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. You can check this supplementary exam information page for dates, and approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.
If you are given a second opportunity to sit the final examination as a result of failing to meet the minimum mark required in a hurdle assessment, you will be offered that chance during the same supplementary examination period and will be notified of the exact day and time after the publication of final results for the unit.
Supplementary exams for Session 2, 2018 will be held in the week of December 17-21, 2018.
Classes
You are required to attend a 3-hour lecture each week; the time and room are:
Wednesday 6pm – 9pm 6 Eastern Rd (E4B), 208 Faculty PC Lab
Technologies used and required
We primarily use the software package R in this Unit. R is becoming increasingly important for statisticians and other scientists. More information about R can be found at the web site http://www.r-project.org/ and the package can be downloaded free of charge from there. R is very similar to the package S-PLUS and most of its codes will also work in S-Plus. From week 2, students will be given exercises each week covering materials from the lectures, and most exercises require using R.
Recommended texts
Prescribed textbook: “Applied Multivariate Statistical Analysis” by Richard A. Johnson, Dean W. Wichern (6th edition)
Students are expected to possess a copy of this textbook and are required to read certain book chapters each week. The following books may be used as other references for this unit:
DILLON & GOLDSTEIN Multivariate Analysis – Methods and applications(QA 278 .d55)
FAHRMEIR & TUTZ Multivariate statistical modelling based on generalized linear models (QA 278 .F34)
FLURY, B A first course in multivariate statistics
FLURY, B Multivariate statistics: A practical approach
MORRISON, D Multivariate statistical methods
The following is a detailed list of the topics covered in this Unit, together with the planned delivery time. All lecture notes will be available on iLearn prior to the lecture.
Week | Topic |
1 |
1. Introduction to multivariate analysis 2. Overview of matrix algebra |
2 |
1. Matrix algebra (cont.) 2. Basic concepts of multivariate distributions 3. Sample statistics |
3 |
1. Multivariate sample statistics (cont.) 2. Some useful multivariate distributions |
4. |
1. Initial data analysis 2. Inferences: Estimation and hypothesis testing |
5. | 1. Inferences (cont.) |
6. | 2. MANOVA |
7. |
1. MANOVA (cont.) 2. Multivariate regression |
8. |
1. Regression (cont.) 2. Principal component analysis (PCA) |
9. | 1. Factor analysis (FA) |
11. |
1. Factor analysis (cont.) 2. Discriminant analysis and classification |
12. |
1. Discriminant analysis (cont.) |
13. |
1. Brief introduction to canonical correlation analysis 2. Brief introduction to cluster analysis |
Macquarie University policies and procedures are accessible from Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:
Undergraduate students seeking more policy resources can visit the Student Policy Gateway (https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.
If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).
Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct
Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.
For all student enquiries, visit Student Connect at ask.mq.edu.au
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.
When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.
This graduate capability is supported by:
Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.
This graduate capability is supported by:
Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.
This graduate capability is supported by:
Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.
This graduate capability is supported by: