BIOL773
Marine Conservation and Management
S1 Day 2019
Dept of Biological Sciences

Contents

General Information 2
Learning Outcomes 3
General Assessment Information 3
Assessment Tasks 4
Delivery and Resources 8
Policies and Procedures 10
Graduate Capabilities 12
Changes from Previous Offering 15
Changes since First Published 15

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Convenor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Williamson</td>
<td>jane.williamson@mq.edu.au</td>
</tr>
<tr>
<td>Contact via email</td>
<td>205 Culloden Road, Room G10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutor</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louise Tosetto</td>
<td>louise.tosetto@mq.edu.au</td>
</tr>
<tr>
<td>Contact via email</td>
<td>205 Culloden Road, Room G18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutor</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincent Raoult</td>
<td>vincent.raoult@newcastle.edu.au</td>
</tr>
<tr>
<td>Contact via email</td>
<td>off campus</td>
</tr>
<tr>
<td>Caitlin Kordis</td>
<td>caitlin.kordis@mq.edu.au</td>
</tr>
</tbody>
</table>

| Credit points | 4 |

| Prerequisites | Admission to MRes |

<table>
<thead>
<tr>
<th>Corequisites</th>
<th>Co-badged status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL893</td>
<td>BIOL893 Advanced Marine Conservation and Management</td>
</tr>
</tbody>
</table>
Unit description
*Please note that this unit requires a minimum number of enrolled students to run and has a maximum number which is dependent on resource limitations. Marine ecosystems play a crucial role in global health and functioning and consist of a complex and dynamic interplay of biological, chemical and physical processes. Once thought to be relative stable in the face of adversity, we now know that most marine systems are fragile and easily disturbed. In this unit we explore how such habitats can be conserved in the face of adversities such as human exploitation, habitat modification and climate change. BIOL773 takes a problem-solving approach to gain a strong understanding of such issues. Students have first-hand experience in designing and carrying out a research project, which is written in journal format with the ultimate aim of producing a document of publishable quality. Students will also receive advanced skills for presenting key concepts in marine conservation and management via novel assessment items such as giving short presentations, producing an elevator pitch, and writing a 100-word summary. BIOL773 enhances ecological and marine biological knowledge and skills for students intending to continue with higher degree research. This unit involves a compulsory fieldtrip to Heron Island, Great Barrier Reef, in mid-semester break, Session 1 (separate excursion fee applies).

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
1. Develop an understanding of why marine conservation and management is necessary from a local to global perspective
2. Identify threats at individual, population and community levels in local, regional and global marine ecosystems
3. Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
4. Develop an understanding of reef structures, organisms and ecosystems
5. Learn and apply field methods and teamwork skills
6. Learn how to communicate issues at an academic and local community level
7. Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

General Assessment Information

ASSESSMENT DETAILS

Details of assessments will be provided in class, on iLearn.
ASSESSMENT SUBMISSION

Digital copies of all assessments will be required. Assessments will be run through Turnitin. All assessments need to be written in the student’s own words.

ACADEMIC HONESTY

Plagiarism is the presentation of thoughts and work of another as one’s own.

Examples include:

- Copying thoughts or work of another without appropriate acknowledgement
- Paraphrasing another person’s work with very minor changes
- Piecing together sections of the work of others into a new document.

All assessments need to be written in the student’s own words. The penalties imposed by the University for plagiarism are serious and may include expulsion from the University. ANY evidence of plagiarism will be dealt with following University policy. Penalties for plagiarism will be imposed for each assessment and clearly defined in marking grades. Further penalties imposed by the Faculty disciplinary committee may range from a loss of all marks and the award of zero depending on the circumstances.

EXTENSIONS, PENALTIES AND DISRUPTION TO STUDIES

The deadlines for assignments are not negotiable. If an assignment is submitted late a penalty of -5% of the mark allocated for the assignment will be deducted per day (i.e. 6 days late = -30% of marks available). Submission must occur within one week (7 days) of the due date or the assignment will not be marked.

If you experience a serious and unavoidable disruption to your studies and require an extension for an assessment please submit a Disruptions to Studies notification via ask.mq.edu.au with supporting documentation, and a Professional Authority Form completed by your healthcare professional. If you anticipate a potentially serious and unavoidable disruption (e.g., upcoming surgery) speak to the unit staff early and apply for an extension before the due date.

UNIT COMPLETION

To pass this unit you must attend the field trip and achieve an overall minimum grade of 50%.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snorkel assessment</td>
<td>0%</td>
<td>Yes</td>
<td>8th March</td>
</tr>
</tbody>
</table>
Snorkel assessment

Due: 8th March
Weighting: 0%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

You must attend a snorkel assessment at the swimming pool at Macquarie University on the assessment date.

Your competency as a snorkeler will be assessed in a practical assessment in the pool. While the hurdle is for attendance and not for competency in the assessment criteria, not receiving competency in particular areas of the assessment may decrease your participation in some practical components of BIOL773 at Heron Island.

The snorkel induction involved the following assessments: swim 200m continuously without swimming aids / tread water for three minutes / demonstrate proper snorkel clearing / demonstrate duck diving and object retrieval from 2m depth / demonstrate appropriate surface snorkeling technique.

Students are encouraged to voluntarily attempt the competences to become Macquarie University research snorkeler, which involves demonstration of the additional two capabilities: swim 800m continuously with snorkeling gear in under 19 min / tow or push a tired snorkeler with snorkeling gear for 200m in under 6 min.

This Assessment Task relates to the following Learning Outcomes:

- Learn and apply field methods and teamwork skills

Podcast presentation

Due: 1st April
Weighting: 25%

In this Assessment Task, you will choose one of the selected videos that highlight a conservation and/or management issue. Only one student can assess and present a particular video. Whilst on Heron Island you will be required to give a 5-minute presentation on the topic of your video and then respond to questions from your peers (also 5 minutes). Note that you are not providing a summary of the video itself but presenting the major issues, solutions, and broader implications.
of each video by sourcing from the primary literature. You may use PowerPoint but no props, please.

You will be required to arrive on the island with your completed presentation on a memory stick. There will be no time to work on the presentation during the field trip.

This Assessment Task relates to the following Learning Outcomes:

- Develop an understanding of why marine conservation and management is necessary from a local to global perspective
- Identify threats at individual, population and community levels in local, regional and global marine ecosystems
- Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
- Develop an understanding of reef structures, organisms and ecosystems
- Learn how to communicate issues at an academic and local community level

100 word summary

Due: 8th April
Weighting: 10%

100 Word Summary. Should you continue in research you will be asked to write lay summaries for journals, research proposals, grants, seminars, etc. These are usually written for educated, but non-specialist, audiences, such as other academics (but not necessarily scientists), policymakers, government officials, editors. The 100 word summary is often the most important part of a submission or application because it is the decisive factor where the audience will decide to read on or move to the next piece. You will submit a 100 word summary that describes the research you have just completed for an educated, but non-specialised, audience. This document should be emailed to your Convenor by 5 pm on the due date. Unit staff will grade this output. You may find this site useful: http://www.wikihow.com/ Summarize-a-Journal-Article

This Assessment Task relates to the following Learning Outcomes:

- Develop an understanding of why marine conservation and management is necessary from a local to global perspective
- Identify threats at individual, population and community levels in local, regional and global marine ecosystems
- Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
- Develop an understanding of reef structures, organisms and ecosystems
- Learn how to communicate issues at an academic and local community level
- Design and implement a scientific project, analyse and evaluate the results in the context
of relevant scientific literature, and produce a document of publishable standard

Group methods and results
Due: 11th April
Weighting: 25%

As BIOL773 is not a statistics or graphics unit, your individual abilities in these skills will not be assessed. What I do want to ensure, however, is that all students have access to the correct results that have been adequately analysed and graphed. For the final paper, therefore, you will write the methods, analyse, interpret, graph and write the results as a group while you are on Heron Island. This section needs to be submitted as a group via email to the Unit Convenor by 5 pm on the due date. All individuals must participate in this Assessment Task, and anyone who has been observed not to participate adequately may have individual marks deducted from this section. Please remember that the final product of this section will only be as good as the collective effort. Only one person needs to email the section to the Unit Convenor but will need to CC all other participants into this email.

This Assessment Task relates to the following Learning Outcomes:
- Learn and apply field methods and teamwork skills
- Learn how to communicate issues at an academic and local community level
- Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Final paper
Due: 3rd June
Weighting: 40%

You will research a topic assessing an anthropogenic impact and/or the management issue on the biodiversity and conservation of a tropical marine ecosystem. As a group, you will research the topic given to you, then design and implement a research project to assess that impact on Heron Island. You and your peers will largely drive the design and running of the project, under the guidance of your unit staff.

The project is a collaborative effort but individual manuscripts will be written, following the format of the target journal.

The currency at the completion of your Masters Degree is, however, publications. I thus add an extra incentive for research quality. Should all go well and the project is well analysed and interpreted and you have all contributed substantially, I will take your individual assessments, rewrite them into a manuscript with participant’s names as co-authors (in addition to the Convenor and Tutor’s names), and submit it to an appropriate journal. This will only occur if the project is of a suitable standard and/or if appropriate data are collected. Unit staff will decide whether any participant has contributed enough physically and intellectually to be a co-author on the paper, as per the university standards (https://staff.mq.edu.au/research/integrity-ethics-and-approvals/research-integrity/areas-of-conduct).
The final paper will be due at 5 pm on the due date. More information on this assessment task can be found in the field trip handout.

This Assessment Task relates to the following Learning Outcomes:

• Develop an understanding of why marine conservation and management is necessary from a local to global perspective
• Identify threats at individual, population and community levels in local, regional and global marine ecosystems
• Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
• Develop an understanding of reef structures, organisms and ecosystems
• Learn and apply field methods and teamwork skills
• Learn how to communicate issues at an academic and local community level
• Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Delivery and Resources

Please note that this unit, when co-taught with BIOL893, requires a minimum number of enrolled students to run and has a maximum number which is dependent on resource limitations.

OVERALL RUNNING OF THE UNIT

Access to iLearn is required to complete assessment tasks and unit resources. Marine ecosystems play a crucial role in the health and functioning of our world and consist of a complex and dynamic interplay of biological, chemical and physical processes. Once thought to be relatively stable in the face of adversity, we now know that most marine systems are fragile and easily disturbed. In BIOL773 we assess what constitutes a 'healthy' marine habitat and explore how such habitats can be conserved in the face of adversities such as human exploitation, habitat modification and climate change. BIOL773 takes a problem-solving approach to gain an advanced understanding and communication of such issues. Students receive first-hand experience in designing and carrying out a research project, which is written in journal format with the ultimate aim of producing a document of publishable quality. Students will also receive advanced skills for presenting key concepts in marine conservation and management via novel a short presentation, and a 100-word summary. BIOL773 enhances ecological and marine biological knowledge and skills for students intending to continue with higher degree research. This unit is part of the Biological Sciences Master of Research Program (MRES).

This unit is run as a compulsory field trip at Heron Island, from the 1st April until the 12th April inclusive. The field trip starts and ends at the Gladstone ferry terminal. There are various logistic issues that you need to work through prior to the field trip. Please ensure that you read those in iLearn and follow the instructions as soon as possible. It is assumed that you will arrive in Gladstone for the ferry fully prepared.
The unit also has two on-campus times. The first is run at a mutually agreed time in early March, from 9.30 to 12.30 to discuss the research and assessments. It is essential that you attend this session, as the podcast topics for the presentation will be decided in the session. Logistics for the field trip will also be finalised. Please read the practical notes for the “Podcast Presentation” prior to this date.

The second is a practical session at the Macquarie University pool on the 8th March. As this is a hurdle assessment, please notify the convenor ASAP if you wish to enrol in BIOL773 but cannot make this meeting. If you already registered as a research snorkeler with Macquarie University, you can apply for RPL for this task via the unit convenor. This must be done before the 8th March.

The field trip fee is $2,000 and must be paid to the University Cashier by 18th March. The payment form is on iLearn. Students who fail to pay the required fee by the due date will forfeit their place in the Unit. Any student who is unable to pay by this date or for whom the fee is prohibitive should contact the unit convenor at their earliest convenience. Depending on circumstances, extensions may be possible. The fee covers bench fees, boating, food, accommodation and return boat transport between Gladstone and Heron Island.

Students are responsible for their own travel arrangements and costs to and from Sydney and Gladstone Marina. The ferry departs Gladstone Marina at approximately 13:30 on the 1st of April and returns to the marina at approximately 13:00 on the 12th of April. See http://www.uq.edu.au/heron-island-research-station/plan-your-visit for additional information. The cost of the ferry is included in your levy. Should you miss the allocated ferry you will need to organise and pay for your own transport to (or from) the Island.

There are a number of logistics outlined on the iLearn site for this Unit. It is essential that students work through these and fulfil these deadlines. Please contact the Convenor if any difficulties arise.

The field activities can be physically strenuous so please ensure you give the Convenor a realistic assessment of your capabilities.

We will be eating and preparing communal meals. Students must inform the Convenor of any dietary requirements during the on-campus session and via iLearn so that we can prepare appropriately for you. Any food allergies or other medical issues also need to be disclosed to the Convenor at (or before) the on-campus session.

Students are strongly encouraged to bring their own snorkelling equipment and wetsuits and to label any equipment or personal items that they bring.

UNIT WEBSITE

The unit web page can be accessed via the student portal (log in at https://iLearn.mq.edu.au/login/MQ/). There you will find unit information, resource material, announcements, forums and dialogue facilities. You are encouraged to use the discussion and email facilities for communication amongst your fellow MQ students and the MQ unit convenor. Please check the unit website regularly for any announcements and additional resource material.
TECHNOLOGY USED AND REQUIRED

Students are expected to access all unit material through the iLearn website. Basic multimedia software (e.g., Windows Media Player, Quicktime) will be needed to listen to recorded podcasts. Students will be required to use internet resources for sourcing information and to use the appropriate software.

We are designing and analysing large datasets. You are strongly encouraged to bring your own laptop as it will be easier to work. It is often difficult to get access to a good computer at the research station as they are heavily used by many researchers.

Before coming to class please do the following:

- Ensure you are running up-to-date software with all security patches installed
- Install Microsoft Excel, PowerPoint and some form of a word processor (e.g., Microsoft Word). There are student versions of these available, and there are also some free alternatives.
- Have your computer language and keyboard set to English for any analyses conducted in R.

ASSUMED KNOWLEDGE

This unit is data-intensive. You will be downloading, manipulating and analysing datasets with many observations. As a result, you will need to be proficient in the use of Microsoft Excel and basic statistics. Please check the assumed knowledge section of the iLearn website prior to the field trip for online tutorials covering these topics.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- Special Consideration Policy (Note: The Special Consideration Policy is effective from 4
Undergraduate students seeking more policy resources can visit the Student Policy Gateway (https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy.
Graduate Capabilities

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Develop an understanding of why marine conservation and management is necessary from a local to global perspective
- Identify threats at individual, population and community levels in local, regional and global marine ecosystems
- Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
- Develop an understanding of reef structures, organisms and ecosystems
- Learn and apply field methods and teamwork skills
- Learn how to communicate issues at an academic and local community level
- Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Assessment tasks

- Podcast presentation
- 100 word summary
- Group methods and results
- Final paper

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcomes

- Develop an understanding of why marine conservation and management is necessary
from a local to global perspective

• Learn and apply field methods and teamwork skills
• Learn how to communicate issues at an academic and local community level
• Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Assessment tasks

• Podcast presentation
• 100 word summary
• Group methods and results
• Final paper

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

• Identify threats at individual, population and community levels in local, regional and global marine ecosystems
• Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
• Develop an understanding of reef structures, organisms and ecosystems
• Learn and apply field methods and teamwork skills
• Learn how to communicate issues at an academic and local community level
• Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Assessment tasks

• Snorkel assessment
• Podcast presentation
• 100 word summary
• Group methods and results
• Final paper

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create
new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Develop an understanding of why marine conservation and management is necessary from a local to global perspective
- Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
- Develop an understanding of reef structures, organisms and ecosystems
- Learn and apply field methods and teamwork skills
- Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Assessment tasks

- Group methods and results
- Final paper

PG - Engaged and Responsible, Active and Ethical Citizens

Our postgraduates will be ethically aware and capable of confident transformative action in relation to their professional responsibilities and the wider community. They will have a sense of connectedness with others and country and have a sense of mutual obligation. They will be able to appreciate the impact of their professional roles for social justice and inclusion related to national and global issues.

This graduate capability is supported by:

Learning outcomes

- Develop an understanding of why marine conservation and management is necessary from a local to global perspective
- Identify threats at individual, population and community levels in local, regional and global marine ecosystems
- Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
- Learn and apply field methods and teamwork skills
- Learn how to communicate issues at an academic and local community level
- Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard
Assessment tasks

• Podcast presentation
• 100 word summary
• Group methods and results
• Final paper

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcomes

• Conceptualize the conflicts between marine conservation, the management of marine resources, and the role of the general community in the process
• Develop an understanding of reef structures, organisms and ecosystems
• Learn and apply field methods and teamwork skills
• Learn how to communicate issues at an academic and local community level
• Design and implement a scientific project, analyse and evaluate the results in the context of relevant scientific literature, and produce a document of publishable standard

Assessment tasks

• Snorkel assessment
• Podcast presentation
• 100 word summary
• Group methods and results
• Final paper

Changes from Previous Offering

BIOL773 no longer includes a compulsory practical exam during the field trip.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/02/2019</td>
<td>Added text: Please note that this unit, when co-taught with BIOL893, requires a minimum number of enrolled students to run and has a maximum number which is dependent on resource limitations.</td>
</tr>
</tbody>
</table>